sinuate, its posterior angles dilated ; mesonotum (including. the eruciform elevation) almost as long as head and pronotum together ; abdomen longer than space between apex of head and base of crucifurm elevation; tympana completely exposed, coverings entirely alsent ; face more or less centrally suleate; rostrum reaching the intermediate coxic ; opercula small, transverse ; abdomen beneath with the lateral margins broadly recurved; tegmina and wings semiopaque ; tegmina with the hasal cell about twice as long as broad ; apical areas short in length, eight in number, a curved rudimentary vein, curved inwardly, crossing tegmen from base of first ulnar area to base of luwer apical area; posterior tivia with a few fine spines.
'I'ype, T'. cupreosparia, Uhler (Tibicen).

XIX V.-Some Cretaceous and Tertiary Cirripedes reforred to Pollicipes. By Thomas H. Wıthers, F.G.S.

[Plates VII. © VIII.]

The Cirripedes discussed in this paper inchnde certain sessile forms belonging to the fanily Brachylepadidx and a number of pedunculate forms of the family Pollicipedidæ. For the sake of convenience, they are dealt with in the following order:-(1) the species herein referred to the genus Brachylepas; (2) a group of species now included in a new genus Pycnolepas ; and (3) certain species that can now be proved to belong to the more primitive forms of Scalpellum (sensu lato) included in the subgenus Scillalepas of the genus Calantica. All these have been hitherto referred to Pollicipes.

Darwin, in his Monograph on the fossil pedunculate Cirripedes, distinguished the whole of the described species as cither Pollicipes or Scalpellum, and determined certain characters by which one could distinguish the separate valves of the species belonging to those two genera. Except for the more advanced forms of Scalpellum (sensu lato), these distinctions ean no longer be followed, and as our knowledge of the fossil pedunculate forms increases, it becumes more crident that the reference of many of these to the genus Pollicipes can not be maintained ; indecd, it will probably be found eventually that very fow really belong to that genus.

All the fossil species in which the valves are not modified to the extent obtaining in those of Scalpellum were included by Darwin in Pollicipes; but it is evident now that some of thicse are really primitive forms of Scalpellum (sensu luto), and that others belong to forms quite distinct from Pollicipes.

If we consider that Pollicipes or a Pollicipes-like Cirripede was the ancestral type which gave rise to the various forms of pedmeulate Cirripedes and to certain sessile forms, we are not at all surprised to find in the Cretaceous rocks a group of species, which, while in some instances retaining the Pollicipes type of valve, were modified in respect to the number, relative position, and structure of the valves of the capitulum. Such forms as the pedunculate Cirripedes Zeugmatolepas *, Calantica (Scillelepas and Titanolepas ${ }^{*}$), and Pycnolepas, gen. nov., and the sessile Cirripede Brachylepas, illustrate this point.

All of these possess valves which, if found separately, woald unhesitatingly be referred to either Pollicipes or Scalpellum (sensu lato), and, indeed, such has always been the case. Zeugmatolepas and Titanolepas, however, possess valves which, if found singly, would have been referred some to Pollicipes and others to Scalpellum.

Hence, until we can piece together the whole or the greater part of the capitulum in certain of the less modified species, it is obvious that no true idea of their affinities can be attained. It is in this direction that future work must lie, and much work is neeessary before the phylogeny of the group can be studied with advantage.

The purpose of this paper is to discuss certain of these forms from this standpoint, with a view to indicating their phylogenetic position.

Family Brachylepadidæ.

Sessile barnacles in which the shell is composed of an upper whorl of 8 valves, namely, a widely semiconical carina, paired scuta, paired long and narrow upper latera, and a rostrum almost equalling the carina in size, with four whorls of subtriangular imbricating plates encireling the bases of the valves of the upper whorl. Basis probably membranous.

The family consists of the single genus Brachylepas.

[^0]
Genus Brachylepas, II. Woodward.

1901. Brachylepas, II. Woodward, Geol. Mag. dec. iv. rol. viii. p. 150.

Genotype. Brachylepas maissanti, Hébert, sp.
The genns Brachylepas and the family Brachylepadidae were founded to embrace the single species lyrgoma cretacea fron the B. mucronata-zone of Norwich, and subsequently (1906, Geol. Mag. dec. v. vol. iii. pp. 339-340) Dr. Woodward referred to Brachylepas the species Mitella lithotryoides, Bosquet, from the Maestrichtian of Holland, and Pollicipes fallax, Darwin, from the Upper Senonian, 13. mucronatazone of Norwich. A recent paper (Withers, 1912, Geol. Mag dec. v. vol. ix. p. 321) proved the identity of Brachylepas cretacea with the valve figured by Ed. Hébert (1855, Mém. Soc. géol. France, ser. 2, vol. v. p. 374, pl. xxix. fir. 10) as Emarginula (?) nuissanti, whence the name of the genotype beeame Brachylepas naissanti, Hébert, sp. The type-species was fully discussed and a restoration giveu (reproduced, text-figure 5, p. 201).

Now that we know the form, number, and disposition of the valves comprising the capitulum of B. naissanti, we ean diseuss the speeies Mitella lithotryoides and Pollicipes fallax. The last-named species is dealt with under the new genus Pycnolepas (see p. 175).

Brachylepas lithotryoides, Bosquet, sp.

1857. Mitella lithotryoides, J. Bosquet, Notice sur quelques Cirripèdes recemment découverts dans le Terrain Crétacé du Duché de Limbourg. p. 23, pl. iii. figs. 5-10.
1858. Mitella fallax; Darwin, sp., tom. cit. p. 21, pl. ii. figs. 8-12, pl. iii. figs. 1, 2.
1859. Brachylepas lithotryoides, Bosquet, sp.; Il. Woodward, "Cirripedes from the Trimmingham Chalk and other localities in Norfolk," Geol. Mag. dec. v. vol. iii. p. 339, figs. 1-4.

Of Mitella lithotryoides Bosquet figured carinre, a scutum, upper latus, rostrum, and a subrostrum. The subrostrum and one of the carinæ have at the base at least two whorls of imbricating plates, of which some show exteriorly a median basal noteh, just as in B. naissanti. The so-called subrostrum is evidently a rostrum, for it is wider in proportion to its length than the carina, and, like the carina, has a series of imbricating plates at its base; it thercfore could not have served as a subrostrum. Although the prescnce of a median basal notch in some of the imbricating plates
shown in Bosquet's figures renders it very probable that the plates were attached precisely as in B. naissanti, one cammot, in the absence of the original specimens, say definitely that this is the case. The scutum, and the upper latus espe-cially-if, indeed, it be an upper latus,-depart widely from the type of valve seen in B. naissanti, but I am not at all conrinced that they belong to B. lithutryoides. Siuce it is likely, however, that the carina and rostrum ($=$ Bosquet's subrostrum) with the imbricating plates at the base combined to build up a shell in the same way as in B. naissanti, the species may be left, at any rate provisionally, in the genus Brachylepas.

Type. I have so far been unsuccessful in tracing the typespecimens of this species. Prof. K. Martin, in auswer to an enquiry, says that they are not in the Geological Musenm of the University of Leyden, and Prok. Eugène Dubois informs us that they are not in Teylers Stichting, Haarlem. I select the original of Bosquet's figure $6 u-c$, a carina, as the holotype.

Distribution. Maestrichtian: between Vilt and Sibbe, Nédercanue, Bémelen, Geulhem, and at St. Pierre, Duchy of Limbourg, Holland.

Measurements. The carina figured by Bosquet (pl. iii. fig. $6 a-l)$ appears to be the largest known valve, and the length of this is given as 13 mm ., which appareutly includes the imbricating plates at the base.

Family Pollicipedidæ.

Pycnolepas \dagger, gen. nov.

Pollicipeds in which the capitulum is composed of a single whorl of 8 valves, namely, a long and narrow carina, paired scuta, paired upper latera which are long and narrow and overlap the scuta and terga on either side, paired terga, and a rostrum nearly as large as the carina. Peduncular plates large.

Genotype. Pollicipes rigidus, J. de C. Sowerby.

> Pycnolepas rigidus, J. de C. Sowerby, sp. (Pl. VII. figs. $15-19$; Pl. VIII. figs. 1-4.)

[^1]18.j1. Pollicipes rigidus, J. de C. Sowerby ; C. R. Darwin, Pal. Soc Monoerr. looss. lepalider, p. 7:3, pl. is. fig. 7.
10.5. I'ullieipes rigulus, J. de C: Suwerby; (\%. It. Darwin, Ray Soe. Monogr. Sululass Cirripedia, Bılandie, Synop, et Iudex S'ystematicus, p. 6:3\%.

14's. L. Pullicipes rigitus, J. du C. Suwerby ; J. Morris, Cat. Prit. Foss. \because ad ed. p. 96.
leifor. P'ollicipes rinidus, J. de C. Suwerby ; J. W. S.Iter and II. Wuodward, Cal: and Chart lusio. Crustacea, p. 27, pl. i. fig. \%.
1ะतT. Pollicipes rigidus, J. de C. Sowerbỳ ; II. Woulward, Brit. Mus. ('at. Brit. Fuss. C'rustacea, p. 1 +').

Diagnosis. Capitular valses transversely ridged and generally longitudinally ridged. Scuta clongately triangular, with the basi-lateral portion produced and a narrow wallsided ridge curving from the apex to the basi-lateral angle. Terga with the apieal portion much curved towards the scuta, and a ridge like that of the scuta curring from the apex to the basal angle. Peduncular plates withan inwardly projecting basal ledge, the inner extremity of which is furnished with a median socket; externally these plates are irregularly ridged longitudinally and transersely.

Distribution. Albian, Gault: Folkestone and Maidstone, Kent; Eastweare Bay, Sussex; Eelarou (Haute-Marnc), France. Cenomanian, Cambridge Greensand, near Cambridge. Chalk Marl, ncar Cambridge.

Type. J. de C. Sowerby founded this species on a scutum and two imperfect carina from the Gault of Folkestone, but I do not know what has become of the specimens. I select the scutum as the holotype of the species. Of the three valves figured by Darwin (1851) from the Gault of Folkestone, two, the carina and scutun, are in the Geological Department of the British Museum, registered respectively I. 13643 and I. 13644 .

Material. Pollicipes rigidus has hitherto been recorded only from the Gault (Albian), at whieh horizon it is comparatively common, especially at Folkestone. There is in the Geological Department of the British Musenm, registered 1. 136ir0, a single scutnm from the (iault of Eclaron (HautcMarnc), France ; and I have two carinæ from the Cambridge Greensand, as well as some valves from the Chalk Marl (Cenomanian) of Cambridge.
U_{p} to the present only the scutum, tergum, and carina have been described, but we are now able to ald considerably to our knowledge of the species by the discovery in the Gault of Folkestone of a rostrum, an upper latns, and 15 plates of the peduncle. A single upper latus (Pl. VII. fig. 17)
and 6 peduncular plates (three figured, Pl. VIII. figs. 1-3), together with a scutum (Pl. VII. fig. 16), were found embedded in a small piece of clay measuring barely 1 cubic inch, and may therefore belong to the same individual. This might also be the case with the rostrum (Pl. VII. fig. 15) and 8 peduncular plates, which were found together in a similar piece of clay. The remaining single peduncular plate was found together with a carina.

It is a very significant fact that these peduncular plates were found on three different occasions, and in association with the other valves of P. rigidus, for if there had been a lower series of valves to the capitulum of this species it is extremely unlikely that one would find 15 peduncular plates and not a single example of a valve of a lower whorl. We are therefore led to the conclusion that there was no lower whorl, and that the capitulum of P. rigidus was formed of a single whorl of 8 valves.

Measurements. The valves here fignred from the Gault of Folkestone measure respectively :-

	Length. mm	Breadth. mm.
Rostrum	$8 \cdot 9$	$5 \cdot 7$
Scutum.	$13 \cdot 0$	$5 \cdot 8$
Upper latus	$5 \cdot 8$	$2 \cdot 7$
Tergum.	$11 \cdot 1$	$6 \cdot 7$
Carina	$14 \cdot 6$	$5 \cdot 6$
Peduncular p	1.5	$2 \cdot 4$

A further peduncular plate has a length of 1.8 mm . and a breadth of $3 \cdot 2 \mathrm{~mm}$. Much larger valves are known from the Gault of Folkestone than any of the above, and in the British Museum are four valves with measurements \qquad

	Length.	$\begin{gathered} \text { Breadth } \\ \mathrm{mm} . \end{gathered}$
Rostrum. I. 13631	$15 \cdot 0$	8.8
Scutum. I. 13488	$15 \cdot 2$	$7 \cdot 8$
Tergum. I. 13486	$19 \cdot 4$	$10 \cdot 6$
Carina. I. 13639.	$19 \cdot 3$	$7 \cdot 1$

In the Museum of Practical Geology (no. 26854) there is a scutum measuring 18.4 mm , in length and 7.5 mm . in breadth, and this is the largest scutum seen by me.

The valves from the Chalk Marl of Cambridge are rather small, the largest, a scutum (Pl. VIII. fig. 4), being 4.8 mm . long and $2 \cdot 1 \mathrm{~mm}$. broad.

Description of valves. All the valves of this species are conspienonsly marked on their outer surface with sharp, narrow, steep-sided, prominent ridges parallel to the growthlines, and each of these rilges appears to have been formed at the completion of each period of growth. In some of the specimens from the Albian (Gault) the spaces between the ridges are smooth, and in others they are plainly marked with longitudinal ridges; but, since all the specimens seen from the Cenomanian (Chalk Marl) have longitudinal ridges and the omament altogether is more pronomeed, it scems as if the valves from the Gault with smooth interspaces came from a lower horizon than those with ridged interspaces. All the valves from the Chalk Marl are very much smaller than the valves from the Ganlt. The following deseriptions are based on valves from the Ganlt of Folkestone, but any distinctive features shown by the valves from the Chalk Marl are pointed out where considered necessary.

Carina (Pl. VII. fig. 19) semicylindrical, widening gradually from the apex to the basal margin, moderately bowed inwards, strongly convex transversely, not carinate, basal margin slightly concave in the middle. Outer surface ornamented with a number of irregularly spaced, raised, and somewhat undulating ridges, which on the extremely narrow parietes are obliquely upturned; in some specimens the spaces between these ridges are smooth, but in others, especially in those from the Chalk Marl, they are plainly marked with longitudinal ridges. The apieal half of the valve projected freely, and on the inner surface this part of the valve is marked with growth-lines which extend from the basal angles and meet in an acutely rounded angle on a slight but well-marked median ridge.

Rostrum (PI. VII. fig. 15) semiconical, smaller and proportionally wider than the carina, widening rapidly from the apex to the basal margin, considerably bowed inwards, strongly convex transversely, basal margin concave. Outer surface ornamented similarly to the carina. The apical half projected freely, and on the inner surface this part is marked with growth-lines which extend from the basal angles and meet below the apex in a wide flatly rounded angle.

Scutum (Pl. VII. fig. 16; Pl. VIII. fig. 4) elongately triangular, with the basi-lateral portion produced, strongly convex transversely, especially in its apical portion, apex acuminate and strongly curved towards the terga; oceludent margin strongly convex; basal margin about half the length of the oceludent margin, and making with it an angle con-
siderably above a right angle; tergo-lateral margin concave in its upper part, the lower part being rounded and protuberant. Basi-lateral angle sumewhat acute, with a slight, narror, square-edged extension formed by the projection of the ridge extending from the apex t) this point ; this projection is extremely prominent in the scuta from the Chal' Marl (Pl. V'III. fig. 4). The apico-basal ridge is very conspicuous, being formed of a single ridge in the Ganlt valres and of two ridges in the Chalk Marl valves, and extends in a strongly curved line from the aper about midway between the outer margins ; it is narrow, being usually about half the width of a zone of growth, and has perpendicular sides, or is, as Darwin said, wall-sided; where the transverse ridges cross this ridge it is prodnced into slight prominences, rarying in prominence in different specimens; but in those from the Chalk Marl the ridge is produced into sharp points. A slight ridge extends from the aper near and parallel to the upper part of the tergo-lateral margin, and from this ridge the valre is inwardly rounded. Some valses are ridged longitudinally, and others not, bat all those from the Chalk Marl are strongly ridged longitndinally between the transrerse ridges. On the inner surface the occludent edge is broal and flat, is midest adjoining the tnp of the pit for the adductor musele, being there mearly half the width of the ralve, and is marked with growth-lines; a deep triangular furrow, marked with growth lines, lies near the tergal margin, and serres for the reception of the scutal angle of the tergum ; just below the furrow and the flat occhdent edge there is a deep pit for the adductor muscle.

Tergum (Pl. VII. fig. 18) subrhomboidal, almost flat trausrerselr, with a cursed, narrow, wall-sided ridge like that of the scutum, extending from the apex to the basal angle, where it is produced : apical portion much curved towards the scnta. The apico-basal ridge is situated abont one-third the width of the valre from the cariual marrin, is only very slightly raised where crossed by the transverse ridges, which are not so prominent as on the other valves; in the ralves from the Chalk Marl the ridge is produced into prominent sharp points. The upper cariual margin is slightly longer than the lower, and makes with it almost a continuous curve; oechudent margin slightly coneare, shorter than the scutal margin. A portion of the valre along the occludent margin is rounded and protuberant to the extent to which the ralve was overlapped by the scutum; this raised portion is followed by a depression, which is bounded by a slight but
distiuet ridge which extends from the apex to about the middle of the scutal margin. On the imner surface the upper carinal edge is flat and wide, and the inner oceludent c.lge is romuled and narrower, both edges being marked with growth-lines.

Clper latus (Pl. VlI. fig. 1i) a rery acute-angled isosceles triangle. External surbace marked with irregularly spaced, slightly undulating, transverse ridges, slightly upturned at the lateral margins, and in the single valve seen there are feebly marked longitudinal ridges. The growth-lines are continued on the imer surface, where they are obliquely upturned, and meet in a raised, sharp-edged, median ridge, which extends to the apex. The portion marked with growth-lines overlapped the senta and terga on cither side, the smonth triangular portion being covered by the corium or membrane lining the inside of the valves.

Peduncular plates (PI. VIIl. figs. 1-3). There are fifteen examples known, and, although of different sizes, all are of the same type. They have a longitudinally ridged outer wall, with from two to three prominent transverse ridges, and an inwardly projecting basal ledge, on the inner extremity of which is a deep, median, elliptical socket; the base of the inwardly projecting portion is concare. Except for this socket they agree well with some peduncular plates that appear to belong to the species Pollucipes glaber, F. A. Roemer.

Pycnolepas fallax, Darwin, sp.
 (Pl. VII. figs. 10-14; Pl. VIII. fig. 5.)

18.50. Pollicipes maximus, Sowerby ; R. Kner, Haidinger's Naturw. Ablandl. Bd. iii. Abth. \because, p. 3., pl. v. fig. 12.
1ع:0. Pollicipes glaber, F. A. Roemer; A. Alth, Haidinger's Naturw. Ablandl. Bd. iii. Abth. 2, p. 198, pl. x. fig. 20.
$\div 1850$. I'ollicipes rigidus, J. de C. Suwerby; II. B. Geinitz, Das Quadersandsteingebirce, p. 10́, pl. ii. figs. 8 a-c.
18.51. Pollicipes fallax, Darwin, Pal. Soc. Monogr. Foss. Lepadide, p. is, pl. iv. tig. 8 .
185.t. I'ullicipes fallax, Darwin, Ray Soc. Monogr. Subclass Cirripedia, Balanide, Syuop. et Index Systematicus, ${ }^{\text {p. }}$. 633.
1e.54. Iollicipes fallax, Ditwin; J. Morris, Cat. Brit. Foss. 2nd ed. p. 96.
1-5.7. Mitella fallax, Darwin, sp.; J. Bosquet, Notice sur quelques Cirripèdes Terrain Crétacé Duché de Limbourg, p. 17, pl. ii. tigs. 1-7 (uon pl. ii. firs. 8-12, pl. iii. figs. 1, o).
1e6t. Pollicipes fallar, Darmin; A. Reuss, Sitz. d. K. Akad. Wiss. Wien, rol. xix. Ab'h. i. p. 240, pl. iii. figs. 1-6 (? non figs. 12-15).
187.: I'ullicipes fallax, l'arwin; II. Woodward, Brit. Mus. Cat. Brit. looss. C'rustacea, p. 140.
18-U. I'ollicipes fallux, Harwin; Th. Mirsson, Mittheil. naturw. Ver. Neu-Vorpommern und liiigen, xii. p. 20 (non pl. ii. lig. 6).
1886. Pollicipes fullax, Darwin; J. Kafka, Sitz.-Ber. k. Bühm. Gesell. Wiss. Prair (1885), p. 571, pl. iii. figs. 2, 3 (partim).
1887. Pollicipes fallax, Darwin; A. J. Fritsch and J. Kafka, Crust. Böhmischen k reidef. p. 10, fig. 17 (partim).
1888. Mitella fallax, Darwin, sp. ; A. Peron, Bull. Suc. Sci. Yonne, vol. xli. (1887) p. 267, pl. iii. figs. 5-9.
1893. Pollicipes fallax, Darwin; A. Fritsch, Arch. naturw. Landesd. Böhmen, Prague, vol. ix. p. 108, fig. 143.
1002. Follicipes fallax, Darwin ; A. Wolleman, Abh. k. preuss. geol. Landesanst. N. F. Heft 37, p. 115.
1906. Brachylepas fallar, Darwin, sp.; II. Woodward, Geol. Mag. dec. r. rol. iii. p. 340, figs. 5-18, 21-22, 24 (non figs. 19, 20, 23).
1912. P'ollicipes fallax, Darwin; T. H. Withers, "Cirripedes in the Norwich Museum from the Nerfolk Chalk, studied by Darwin," Trans. Norfolk and Norwich Nat. Soc. vol. ix. p. 309.

Diagnosis. Capitular valves ridged transversely, but not longitudinally, or at least very weakly so. Scuta elongately triangular, with a ridge with sloping sides curving from the apex to the basi-lateral angle. 'Terga with a similar ridge curving from the apex to the basal angle.

Distribution. Upper Senonian, B. mucronata-zone: Norwieh and Trimingham, Norfolk ; Clarendon, near Salisbury, Wilts ; I. of Rugen; Lüneburg, Hanover. A. quadratuszone : East Harnham, near Salisbury, Wilts; Reims, France. M. corangninum-zone: Quidhampton, near Salisbury, Wilts. Upper Senonian: Gehrden, Hanover ; ? Plauen, near Dresden; Ciply and Heure-le-Romain, Belgium; Nagorzani, Galicia; near Lhota Úretická, and Chotzen, Bohemia ; Balsberg and Köpinge, Seania.

Type. Of this species Darwin had only scuta and terga; his figured types*, the scutum and tergum from the Chalk of Norwich, are in the Norwieh Museum, registered respectively 2153 (lectoholotype), $2153 c$.

Material. Further valves, coming from different horizons, have been made known by later authors, but we are indebted more particularly to Bosquet (1857) and II. Woodward (1906) for our knowledge of the species, especially since the valves figured by them are from one horizon.

So far it can be proved that P.fallax had a rostrum, paired scuta, paired upper latera, paired terga, and a carina, and all these valves are of the same general type as in Brachylepas, except that the carina and rostrum are longer and narrower, just as in the other species included in the new genus Pycnolepas; the arrangement of the valves is

[^2]precisely the same. As to the remaining valies that have been attributed to this species, it is extremely donbtfnl whether they really belong to it, and, in view of the relationship of this species to P. rigidus, there is good reason to believe that it had no lower whorl of valves.

Bosquet (1857) figured as belonging to this species a scutum, tergum, carina, rostrum, snbearina, subrostrum, an upper latus, and seven valves of the lower whorl. H. Woodward (1906) figmred corresponding valves, with the exception of the subearina, but with the addition of two carinal latera, all the ralves having been fomnd together in a large pyramidal tlint. He referred the species to his genus Brachylepas.

Throngh the kindness of Mr. R. MI. Brydone, F.G.S., I have been enabled to examine the whole of his Trimingham specimens of P. fallax that were deseribed by Dr. Woodward (1906). In that paper some carine, rostra, and a supposed subrostrum were figured, but, in my opinion, fig. 8 is a small carina, and not a rostrum, and the valve figured (fig 10) as a subrostrum is merely a young and smaller example of a rostrum. Among the valves colleeted by Mr. Brydone there are small carime, and there is no reason why there should not be correspondingly small rostra. The two carinal latera figured as belonging to P fallux really belong to Scalpellum, fig. 19 being a carinal latus of S. fossula and fig. 20 being a simitar valve of S. maximum ; and, although the valve represented by fig. 19 was found attached to a carina of P. fullax, it certainly does not belong to that species. It is of almost the same length as the carina, and is consequently much too large to lave belonged to the same individual, as suggested by Dr. Woodward, even if it were a valve of the same species. Of the lower latera figured by Dr. Woodward, that in the upper figure (fig. 23) agrees very well with the imbricating plates in Brachylepas maissanti, and probably belongs to that species; but the lower figure (fig. 24) represents only the broken apical portion of a rostrum of P. fallux, and on the inner surface ean be scen the flatly rounded growth-lines typical of the rostrum of l. fullax and allied species, the growth-lines indieating the free projection of the apex.

In identifying these valves and referring them to Brachylepas Dr. Woodward evidently overlooked the fact that in the type-species there is no subrostrum, and that in his restoration there is no place for such valves or for the comparatively large carinal latera.

Ann. © Mug. N. Hist. Ser. 8. Vol. xiv.

With regard to the so-called subcarinæ and subrostra figured by Bosquet (1857), it is highly probable that they also are small examples of carinæ and rostra, and the seven supposed lower lateral plates, of which two show exteriorly a median basal notch, may be referred with more justification to Bosquet's species Brachylepas lithotryoides.

There is also much uncertainty with regard to the valves considered by other authors to belong to the lower whorl of P. fallax, and, in fact, there is no real evidence that P. fallax had a lower whorl of valves, for in the absence of any lower lateral plates one cannot quite see how this species could have had subrostra and subcarina.

Therefore, in default of more precise evidence to the contrary, I prefer to include Pollicipes fallax in the new geuns Pycnolepas, with which it more closely agrees.

A'ccording to Mr. Brydone, P. fallax is by far the commonest of the Cirripedes in the Trimingham Chalk. It is met with occasionally in the mucronata-zone of Norwich, and Dr. H. P. Blackmore has collected in the neighbourhood of Salisbury a single carina and rostrum from the mucronatazone and a single rostrum from the quadratus-zone. The most interesting specimen, one which constitutes the earliest record for this species, is a beantifully preserved rostrum (Pl. VIII. fig. 5) obtained by Dr. Blackmore from the base of the upper third of the M. coranguinum-zone at Quidhampton, near Salisbury. Although this valve has a median ridge and is so much incurved that I think it must be a rostrum, it certainly is comparatively narrow for such a valve. It has a rather different appearance, owing to its being more strougly and irregularly ridged than the valves from higher horizons.

Measurements. The valves figured in this paper (Pl. VII. figs. 10-14) measure respectively :-

	Length. mm .	Breadth. mm.
Rostrum.	$14 \cdot 1$	$9 \cdot 2$
Scutum	$18 \cdot 0$	$9 \cdot 2$
Upper latus	12.5	$2 \cdot 8$
Tergum .	$15 \cdot 8$	$10 \cdot 8$
Carina.	$17 \cdot 4$	$6 \cdot 5$
? Rostrum (Pl. VIII. fig, 5)	$7 \cdot 7$	$3 \cdot 7$

Only two valves are known to me from the English Chalk that exceed the above in size, and these are a tergum from the Trimingham Chalk, said by Dr. Woodward (1906, p. 345) to be 19 mm . long and 11.5 mm . broad, and a carina in the

Norwich Museum (2150b) measuring 29•1 mm. in length and 74 min. in breadth. These measurements, however, are exceded by two valves in the Geological Department of the British Musenm, said to be (H. Woodward, 1906, p. 311) probably from the Ober Quader of Plauen, near Dresden. They are :-

	Length.	Breadth. mm.
Scutum (I. 14050)	$20 \cdot 2$	10.7
Tergum (I. 140\% ${ }^{\text {a }}$)	$23 \cdot 1$	$10 \cdot 0$

Description of valves. In this speeies the valves are moderately thick and conspicuously marked externally with rather wide, prominent, transverse ridges, which terminate each zone of growth, but the valves are not ridged longitudinally, or at least only weakly so. 'The transverse ridges are more prominent at the occhindent margins of the scuta and terga and on the lateral margins of the other valves.

Carina (Pl. VII. fig. 1t) semicylindrical, stightly or moderatcly bowed inwards, strongly convex transversely, not carinate ; basal margin somewhat concave. Outer surface ornamented with a number of strong but somewhat flattened ridges, which are sometimes fairly regularly spaced, but more often irregularly spaced. The apical half of the valve projected freely, and on the inner surface the freely projecting purtion is marked with growth-lines which extend from the basal angles and meet in a flatly romuded angle below the aper.

Rustrum (Pl. VII. fig. 10) semiconical, smaller and proportionally wider than the carina, nsually considerably bowed inwards, strongly convex transersely, with a median lieel feebly marked in some specimens, but not apparent in others; basal margin concave. Ornamented externally like the carina. The valve projected freely to nearly half of its extent, and on the inner surface this portion is marked with growth-lines, which extend from the basal angles, and on reaching about half the length of the valve turn abruptly inwards and downwards, and ineet in a concave curve below the apex.

Scutum (Pl. 11. fig. VII) elongately triangular, with the basi-lateral portion slightly produced, moderately convex trausversely, apex acuminate and strongly bowed towards the terga; occludent margin strongly convex ; basal margin nearly straight, and at the rostral angle making almost a right angle with the lower part of the occludent margin ;
tergo-lateral margin usually concare in its upper part, and conver below. The apico-basal ridge is very prominent, rather broad, about as broad as a zone of growth. slightly rounded at its summit, has stecply sloping sides, and extends in a curved line rather nearer to the tergo-lateral margin. Apico-basal ridge not at all produced where crossed by the prominent transserse ridges: the transverse ridges are strongly raised, equally spaced, and bend downwards and are slightly thickened at the occludent margin. A slight ridge can be seen extending from the apex to the tergolateral angle, and from this ridge the valse at the upper part of the tergo-lateral margin is inwardly rounded. On the inner surface the occludent edge is much thickened, broad and flat, is widest adjoining the top of the pit for the adductor muscle, being there more than two-thirds the width of the valve; it is marked with growth-lines. The inner margin of the occludent edge is considerably raised and overhangs the subtriangular depression for the reception of the scutal angle of the tergum.

Tergum (Pl. VII. fig. 13) subrhomboidal, somewhat convex transversely, with a curved ridge like that of the scutum, from which the sides of valve slope steeply, extending from the apex to the basal angle, but not projecting beyond it; apical portion of the valre slightly to moderately curved towards the scuta. The apico-basal ridge is situated almost in a median line, and is not produced where crossed by the transverse ridges. Upper carinal margin usually slightly shorter than the lower, both of which meet in a well-defined angle; occludent margin usually shorter than the scutal margin, and of about the same length as the upper carinal margin. A portion of the valve along the occludent margin is romed and protuberant, and on its inner margin is bounded by a depression; about midway between the depression and the apico-basal ridge, slight indications can be seen in some specimens of an indistinct ridge, evidently homologous with that seen in the terga of P. rigidus.

U'pper latus (Pl. VII. fig. 12) shaped like a very acuteangled isosceles triangle. External surface marked with several raised, regularly spaced, and prominent transverse ridges, slightly upturned at the lateral margins; the inner lateral margins have a serrated appearance owing to the prominence of these outer ridges. On the imner surface the growthlines are obliquely upturned, and meet on a very prominently raised, sharp-edged ridge, which extends to the apex from a point just abure one-thirci the length of the valse from the base.

P!ycnolepas brïnnichi, nom. nov. (Plate VIl. figs. 5-9; Plate VIII. fig. 6.)

> 1839. Pollicipes rigidus, J. de C. Sowerby ; J. Steenstrup, Kiqyer's Naturhist. 'Tidsshrift, Jd. ii. p. 401, pl. r. tigs. $2 t-26$ (non 1' rugidus, J. de C. sowerber, Is3(6).
> 1851. Pollicipes ctryums, C. li. Darwin (non Lesson), l'al. Soc. Monogr. Foss. Lepadide, p. 7 ti, pl. iv. fig. !).
> 1854. Pollicipes clegtans, U. R. Durwin, liay Soc. Monorr. Subclass Cirripedia, Balanide, Synop. et Index Systematicus, p. 6:39.
> 1857. Mitella clegans, U. Ri. Darwin, sp; J. Bosquet, Notice sur quelques Cirripèdes dans le Terrain C'rétacé du Duché de Limbourg, p. 14, pl. iii. figs. $: 3 a, b$.

> 18it5. Pollicipes clegous, C. li. Darwin; J. WT. Salter \& H. Woodward, ('at. © Chart J'oss. Cristacea, p. 27, pl. i. fig. 9.
> 1912. Pollicipes elegrans, C. R. Darwin; K. M. Nielsen, Medd. Dansk geol. Foren. Bhe iv. p. $3 \bullet$, pl. i. figs. 18-20, pl. ii. figs. 1-8, 11, 1: (non figs. 9, 10, 18-18).

Diagnosis. Capitular valves transversely and longitudinally ridged. Scuta subtriangular, with a broad wall-sided ridge, sometimes broader than the tergo-lateral portion, curving from the apex to the basi-lateral angle. Terga with the apical portion only slightly curved towards the scuta, and a similar but narrower ridge extending almost straight from the apex to the basal angle.

Distribution. Danian : Faxe, Denmark; Ignaberga, Scania. Maestrichtian: Bémelen, Duchy of Limbourg, Holland, and Ciply, Belgium.

Type. Steenstrup originally described a scutum, tergum, and earina of this species as Pollicipes rigidus, J. de C. Sowerby. Darwin subscquently described the species as new, but inadrertently gave it the name Pollicipes elegans, already, as he well knew, used by Lesson (1830, "Voyage de la 'Coquille,'" vol. ii. p. 441; 1831, Illust. Zool. pl, xxxix.) for a recent species.

Darwin's material consisted of three scuta, a tergum, and two carinse received from Prof. Steeustrup, and of two scuta collected by N. P. Angclin. Since Cirripedes have already been named after both Darwin and Steenstrup, I name this after Dr. K. Brünnich Nielsen, to whom we are indebted for our present know ledge of the species.

Dr. J. P. J. Ravn has most kindly searched among the Stccustrup collection in Copenhagen University, and informs me that he can identify neither the valves figured by Steenstrup as l. rigidus nor those figured by I arwin as P. elegans. Prof. G. Holm also writes to say that the two scuta mentioned by Darwin as collected by N. P. Angelin are not in the Riksmusenm, Stockholm. They were probably in the Steenstrup collection.

It would have been best, perhaps, to have fixed on one of Darmin's specimens as the holotype of the species, but in view of the fact that all the specimens have been lost sight of, I relnctantly fix on the scutum here figured (Pl. VII. fig. 6) as the holotype.

Material. Only the scutum, tergum, and carina were known to Darmin, but Dr. K. B. Nielsen has collected a large number of valves comprising 74 carinæ and rostra, 129 scuta (81 right and 48 left), 126 terga (64 right and 62 left), and 9 upper latera. Some of these which he figured (1912) include a rostrum and an upper latus. Among them are three peduncular plates, which, however, show no signs of prominent transverse and longitudinal ridges as one would expect them to if they belonged to such a highly ornamented species as P. briimichi ; they agree more in their ornament with the valves of the species Scillalepas dorsata, to which therefore I refer them. The valve figured as a carinal latus is a rostral latus of S. dorsuta (see p. 193). Dr. J. P. J. Ravn sent me from the Mineralogical Museum of Copenhagen University the three peduncular plates for examination, but, owing to the fact that the "carinal latus" has been lost, he sent other similar valves determined by Dr. Nielsen, and these withont doubt are rostral latera of S. dorsata. For the specimens of P. briimmichi figured in this paper I am indebted to Dr. Nielsen, as also for 42 carinæ and rostra, 43 scuta, 91 terga, and 3 upper latera.

Although Dr. Nielsen records upwards of 300 valves, not a single valve has been found that could be referred to a lower whorl.

Meusurements. This species probably attained nearly to the size of P. paronai. 'To judge from the figures given by Dr. Nielsen, the valres measured:-

| | Length.
 mm |
| :--- | :--- | | Breadth. |
| :---: |
| mm. |

The valves here figured (PI. VII. figs. $5-9$), with the exception of the upper latus, are much smaller than the above. Darwin (1851, p. 76) records a scutum as measuring $1 \cdot 1$ inches in length, which is much larger than that figured by Dr. Nielseu.

Description of Valves. The valves of this species have the ridges terminating cach zone of growth much raised and with stecply sloping sides, the longitudinal ridyes also being raised and prominent.

Carina (Pl. VII. fig. 9) semicylindrical, widening graduaily from the apex to the basal margin, moderately bowed iuwards, strongly convex transversely, not carinate, basal margin slightly concave. Outer surface ornamented with a number of prominent transerse ridges crossed by longitudinal ridges, which present a goffered appearance where they meet. The apical portion projected freely for more than a third the length of the valve, and this part is marked with growth-lines, which extend from the basal angles and meet in an acutely rounded angle below the apex; the inner lateral edges arc somowhat thickened for about one-fourth the width of the valve.

Rostrum (PI. VII. fig. 5) semiconical, smaller and proportionally wider than the carina, widening rapidly from the apex to the basal margin, considerably incurved, strongly convex transversely, basal margin slightly conver. Outer surface with ornanent similar to that of the carina. The apical half projected freely, and on the inner surface this part is marked with growth-lines that extend from the basal angles and meet in a rounded angle below the apex; the immer lateral edges are somewhat thickened to about onethird the width of the valve.

Scutum (Pl. VII. fig. 6; PI. VIII. fig. 6) subtriangular, strongly convex transversely, apex acuminate and strongly curved towards the terga; occludent margin usually strongly convex ; basal margin almost straight, about half the length of the occludent margin, and making with it an angle slightly above 90°; tergo-lateral margin usually strongly concave in its upper part, and varying from straight to strongly convex in its lower part, which forms nearly a right angle with the basal margin. Basi-lateral angle generally slightly produced and obliquely truncated, the projection being formed by the apico-basal idge. This ridge is a conspicuous feature, and extends from the apex in a slightly curved line, much nearer to the tergo-lateral margin. It is mueh raised, flat-topped, has perpendicular sides, is wider in most valves than a zone of growth, in some much wider, and even wider than the tergo-lateral portion of the valve (see Pl. VIII. fig. 6). It is formed of longitudinal ridges varying in number from two to five. An almost imperceptible ridge extends from the apex almost parallel to the upper part of the tergo-fateral margin, and from this ridge the valve is strongly rounded
inwards. Onter surface ornamented with strongly marked, raised, transrense ridges, crossed by well-marked longitidinal ridges. On the inmer surface the occludent edge is very broad and flat, is widest adjoining the pit for the adductor muscle, being more than half the breadth of the valve, and is marked with growth-lines. An elongatelytriangular furrow, marked with growth-lines, is situated above the pit for the adductor muscle, and is bounded by the upper part of the immer occludent edge, aud this furrow serves for the reception of the scutal angle of the tergum.

Tergum (Pl. VII. fig. 8) subrhomboidal, slightly convex transversely, with an almost straight, wall-sided ridge, much narrower than that of the scutum, extending from the apex to the ba-al angle, where it is produced and truncated; apical portion scarcely curved towards the scuta. The apicobasal ridge is situated almost centrally, and where crossed by the transverse ridges is produced into slarp points. Upper carinal margin slightly convex, and the occludent margin slightly concave, both being about the same length, and shorter than the lower carinal and scutal margins, which also are of about the same length. A portion of the valve is rounded and protuberant along the occludent margin, to the extent to which the valve was overlapped by the scutum; this rounded margin is followed by a wide depression bounded by a more or less distinet ridge extending from the apex to about the middle of the scutal margin. Ou the inner surface the upper carinal edge is flat, and the inner occludent edge romided and narrower, both edges being n. arked with growth-lines.

The upper latus (Pl. VII. fig. 7) has the shape of a very acute-angled isosceles triangle. Externally it is marked with irregular, undulating, raised transverse ridges, abruptly uptumed at the outer margins: these ridges are crossed by prominent longitudinal ridges which give to them a goffered appearance. The growth-lines are continued on the imner surface and meet on a raised, sharp-edged, median ridge, which extends to the apex; this ridge fitted between the scuta and terga, the valve on either side overlapping the scutum and tergum, while the smooth triangular part at the base was covered by the corium or membrane lining the ins de of the valves.

> Pycnolepas yaronai, de Alessandri, sp.
> (Plate V11. figs. 1-t.)
189.5. Pollicipes paromai, de Alessandri, Boll. Soc. Geol. Ital. vol, xiii. p. 2G6, pl. i. figs. © $a-f$.
1906. Pollicipes paronai, de Alessandri, Palrout. Ital. vol. xii. p. 248, pl. xili. tigs. 1-9.
Diaynosis. Capitular valves with closely set, somewhat flattened, transverse and longitudinal ridges, the longitudinal ridges on the senta and terga being fine, wavy, and radiating from the apico-hasal ridge. Seuta elongately triangular, with a broad, flattened, stcep-sided ridge curving from the apex to the basi-lateral angle. 'Terga with the apico-basal ridge narrower than that of the scutum, almost straight; the apex not at all incurved.

Distribution. Oligocene (Aquitanian) : Chieri, Turin, Italy. Miocene (Helvetian): Colli di Torino, Baldissero, and Sciolze, Turin, Italy.

Type. Prof. G. de Alcssandri founded this species on carine, scuta, and terga which are in the collection of Count Luigi di Rovasenda, and of these I fix on the scutum itigs. $8 a, b j$ as the holotype. Prof. de Alessandri subsequently fignred similar valves, but among the carinæ included ($1906, \mathrm{pl}$. xiii. fig. 9) a rostrum of the species.

Material. Comnt Luigi di Rovasenda and Prof. ('. de Alessandri kindly sent me the following valves of this species:-3 scuta, 6 terga, and 2 rostra. I am also indebted to Prof. C. F. Parona for allowing me to borrow the two carinæ and the rostrum (figured, Alessandri, 1906, pl. xiii. figs. $7-9$) which are in the Geological Museum of the Royal University of Turin.

Measurements. This is the largest species of the genus, and Prof. die Alessandri gives the following measurements for the valves described by him :-

	Length.	Breadth. mm.
Scutum	24.5	$1 \% 0$
Tergum	29%	$17 \cdot 0$
Carina.	2.0	10\%

The tergum here figured (Pl. VhI. fig. 3), when complete, must have measured at least 30 mm . in length, and its breadth is 19.2 mm . Prof. de Alessandri (1906 , pl. xiii. fig. 9) figures a rostrum as a carina, and this valve is 11.2 mm . in length and 7.4 mm . in breadth. The rostrum here figured (PI. VII. fig. 1) is broken at the apex, but its length must have been at least 17 mm ., and its greatest breadth is $9 \cdot 2 \mathrm{~mm}$., even though the valve is broken at each basal angle.

Description of Valves. In this species the transverse ridges terminatmg each zone of growth are closely and irreyularly
set, and have their edges somewhat rounded and flattened. The longitudinal ridges are also somewhat flattened, and on the scuta and terga have a wavy appearance and radiate from the apico-basal ridge.

Carina (Pl. VII. fig. 4) semicylindrical, widening gradually from the apex to the basal margin, slightly to moderately bowed inwards, strongly convex transversely, not carinate, basal margin almost straight. Outer surface ornamented with a number of prominent, but somewhat flattened transverse ridges, crossed by fine, rounded, closely set, longitudinal ridges. The apical portion projected freely for less than a third of the length of the valve, and the portion is marked with growth-lines which extend from the basal angles and meet in a rounded angle below the apex ; the inner lateral edges of the valve are somewhat thickened for about onefourth the width of the valve.

Rostrum (Pl. VII. fig. 1) semiconical, smaller and proportioually wider than the carina, widening rapidly from the apex to the basal margin, moderately bowed inwards, strongly convex transversely, basal margin concave. Outer surface ornamented similarly to the carina. On the inner surface the lateral edges of the valve are thickened, the median third of the valve forming a deep hollow between; the apical half of the valve projected freely, and this part is marked with growth-lines which extend from the basal angles and meet in a rounded angle below the apex.

Scutum (Pl. VII. fig. 2) elongately triangular, proportionally narrow, almost flat transversely, apical portion much bowed towards the tergum, narrow, and acuminate; occludent margin strongly convex ; basal margin less than half the length of the occludent margin, and forming with it an angle slightly less than 90°; tergo-lateral margin strongly concave in its upper part, its lower part being rounded and somewhat protuberant. Basi-lateral angle, where the apico-basal ridge slightly projects, is obliquely truncated. The apico-basal ridge extends in a strongly curved line from the apex, rather nearer to the tergo-lateral margin ; it is flatly rounded transversely, has steep, but not perpendicular sides, and is more than twice as wide as a zone of growth. Along the tergal margin the valve is inwardly rounded, but there does not appear to be any trace of a ridge. Outer surface ornamented with a number of prominent transverse ridges, the interspaces of which are marked with raised transverse lines; the transverse ridges are crossed by fine, wavy, longitudinal ridges radiating from the apico-basal ridge. On the inner
surface the occludent edge is very broad and flat, and is widest at a point well above the pit for the adductor misele, where it is more than half the width of the valve; an almost flat triangular portion of the valve near the tergal margin, bounded by the raised immer oceludent edge, is marked with growth-lines, and this part served for the reception of the scutal angle of the tergum; the adductor muscle pit lies below the imer oceludent colge, but above the pit there is a comparatively wide sloping portion of the valve between it and the triangular portion which received the tergum.

Tergum (PI. VII. fig. 3) subrhomboidal, moderately convex transversely, with a straight steep-sided ridge, much narrower than that of the scutum, extending from the apex to the basal angle, where it is produced ; apical portion scarcely rurved towards the senta. The apico-basal ridge is situated rather nearer to the tergal lateral margin, and where crossed by the transverse ridges is somewhat raised. Upper carinal margin convex, nearly straight, and about the same length as the scutal margin; oceludent margin convex and of about the same length as the lower carinal margin. A comparatively wide portion of the valve along the occludent margin is slightly raised and rounded, and slightly protuberant at the scutal angle; the raised portion is followed by a depression from which the valve rises to meet an indistinct ridge or fold in the valve extending from the apex to about the middle of the scutal margin. Oni the imner surface a considerable portion of the valve at the imner occludent and upper carinal edges is flat and markel with growth-lines, the imner oceludent edge being the narrowest.

Upper latus unknown.

Pycnolepus scalaris, sp. n. (Plate VIII. figs. 7-10.)
Diagnosis. Upper whorl of valves transversely and longitudinally ridged ; the transverse ridges are produced into sharp spines, where they are crossed by longitndinal ridges. Scntum triangular, with no apico-basal ridge, and growthlines not upturned on the tergo-lateral half of the valve. Upper latus long and narrow. Tergum monnown.

Material. A right scutum, two rostra, and an upper latus. Holotype. Thie rostrum (PI. VIII. fig. 7).
Horizon and locality. Cenomanian, Chalk Marl: near Cambridge.

Measurements. This species is one of the smallest of the
known fossil Cirripedes, and its valves are most beautifully ornamented. They measure respectively :-
$\left.\begin{array}{ll} & \begin{array}{c}\text { Length. } \\ \text { mm. } \\ \text { min. }\end{array}\end{array} \begin{array}{c}\text { Breadth. } \\ \text { mm. }\end{array}\right\}$

Description of Valves. Scutum (Pl. VIII. fig. 10) triangular, slightly convex ; apical portion inclined from the opposing scutum, acute, and curved towards the terga. Basal margin almost straight; occludent margin convex; tergal margin concare. Outer surface ormamented with fine transverse ridges which are not upturned on the tergo-lateral half of the valve. Where the transverse ridges are crossed by the longitudinal ridges, they are produced into short sharp spines, which project outwards but not across the transverse ridges. On the inner surface is a shallow pit for the adductor muscle.

Rostrum (Pl. VIII. fig. 7) semiconical, slightly bowed inwards, basal margin semicircular, somewhat concave. Inner surface thickened near the inner margins, and marked by growth-lines which are continued moder the apex to nearly half the extent of the valve. Outer surface ornamented with transverse ridges. On the larger specimen these ridges are crossed by about seven longitudinal ridges, and are there produced into short spines, similar to, but more pronounced than, those on the scutum. Two of the longitudinal ridges, which occupy a submedian position, are much thicker than the others. On the smatler example the longitudinal ridges are not so apparent.

Upper lutus (PI. VIII. fig. 9) a very acute-angled isosceles triangle, slightly bowed inwards. The outer surface is ormanented with prominent transverse ridges which bear short spines arranged in longitudinal rows, and these spines are evidently produced by longitudinal ridges crossing the transverse ridges as in the other valres. Except for two strong ridges in a median position, the longitudinal ridges are not apparent between the transerse ridges. On the imer surface the growth-lines meet on a raised, sharp-edged, median ridge, which extends from about the middle of the valve to the apex. The valve therefore overlapped the scuta and terga to about half of its extent.

Structure and Affinities. This species is referred to the genus Pycnolepas with some donbt, for, although the rostrum
and upper latus are of the same type as those of the other species of the genus, the sentum is quite molike that of any of them ; the terginn is not known. In the sentum there is no promincme apico-basal ridge, and the growth-lines do not differentiate the oceludent portion from the tergo-lateral portion as in the other species. In fact, if the ormamentation had not been so strikingly similar to that of the other valyes, one would doubt its belonging to the same species. Some humdreds of separate valres of different species have been obtained from the Chalk Marl of Cambridge, but none have been fomed to agree in ornament exeept the above valves, so the probability is that, despite the different form of the scutum, all these valves belong to the same species. In form the scutum approaches that referred by Bosquet to his Brachylepas lithotryoides, but in that species the valve is comparatively thick and massive, is quite different in the strueture of its imuer surface, and can readily be distinguished by its flat and coarse longitudinal ridges. The rostrum and upper latera are similar in form to those of P. vigidus, P. brämnichi, and P. paronai, but can be distinguished by the much more widely-spaced longitudinal ridges, and the spinose appearance of the valves.

Structure of the Species of Pyenolepas.

In my paper on "Brachylepas cretacea" (Gcol. Mag. 1912), the species Pollicipes fallax, Darwin, which had been referred by Dr. H. Woodward to his genus Brachylepas, was left out of consideration. This was done chiefly because it seemed probable that to whatever genus P. fallux, Darwin, belonged, the species Pollicipes paronai, Alessandri, P. elegans, Darwin ($=P^{\prime}$. briilmichi), and P. rigidus, J. de C. Sowerby, belonged also. An examination of the known valves of these three species seemed to show that they were related in form, structure, and disposition, aud were precisely similar to the corresponding valves in P^{\prime}. fallax.
P. parouli, P. elegans, and P. rigidus were represented by carine, scuta, and terga, and if similarity in shape and structure were criteria, one would expect to find that these three species had a lange rostrum and a long and narrow upper latus, as in P '. fallax. This conchsion, strengthened by the fact that P. rigidus occurred in the Gault clay, made it scem advisable to wash such material as could be obtained, in the hope of finding the rostrum and upper latus of P. rigidus, and these valves were cerentually found and proved to be similar in shape to those of P. falla.c. Now
that the rostrum of P. rigidus is known, it is easy to see that some of the valves of this species, hitherto considered to be smaller and wider carinæ, are really rostra; several specimens are in the Geological Department of the British Mnseum. With regard to I^{\prime}. paronai, it is clear to me, from an examination of the specimen, that the valve figured by Prof. G. de Alessandri (1906, Palæontogr. Ital. vol. xii. pl. xiii. fig. 9) as a carina of P. paronai is not a carina but a rostrum. A further specimen, which leaves no doubt as to its being a rostrum, was among the valves given to me by Coment Luigi di Rovasenda; it is particularly like that of P. rigidus, and agrees in being wider in proportion to its length than is the carina. Up to the present, however, the upper latus of P. paronai has not been fonnd.

There remained, then, P. elegans, Darwin, in which the carina, scntun, and tergum only were known, but Dr. K. Brümich Nielsen has since figured (1912, Meddel. Dausk geol. Foren. Bd. iv. p. 32, pl. ii. figs. $1-3,11-12$) a rostrum and an upper latus of P. elegans similar in shape to those of P.fallax, P. rigidus, and P. paronai.

It is therefore proved that in P. fallax, P. rigidus, P. elegans, and, except for the missing upper latus, in P. paronui also, the capitular valves agree in number, structure, and disposition.

The most important evidence, however, in connection with these species is afforded by the 15 peduncular plates that were found on three different occasions with valves of P. rigidus, and undombtedly belong to that species. The circumstances in which these plates were found (see p. 172) justify the conclusion that in P. riyidus, and by inference in P. fullax, P. elegans, and P. paronai, there were only 8 valves to form the capitulum, and that the peduncle was formed of plates similar to those of P. rigidus here figured.

In support of this conclusion, it should be borne in mind that only the smaller examples of carinæ and rostra of P. fallax have been mistaken for subcarinæ and subrostra, and therefore elements of a lower whorl; no lower lateral plates have ever been found to substantiate the claim that that species had a lower whorl. It is also of significance that among upwards of 300 valves of P. elegans, as has already been pointed out, there was found not a single valve of a lower whorl.

Moreover, no valves of a lower whorl of P. paronai have been found. This is the largest species of the genus, the terga attaining nearly $1 \frac{1}{4}$ inches in length, and if lower lateral plates had been present they would have been com-
paratively large and less likely to be overlooked. It is true that the upper latus of P. puronui has not yet been found, but this probably being long and narrow would be more liable to fracture. Most of the valses of this species are nuch fractured.

The capitular valves of Pycnolepas agree with those of Brachylepas in number and disposition, but differ in the far less width of the earina and rostrum. The main difference from Brachylepas lies in the plates of the pediuncle, for these are all of one type, and could not have formed a series of whorls as in Brachylepas. In any case there is a great structural difference from Brachylepas, and since the species differ from those of the typical Pollicipes in the small number of valves to the capitulum, they are placed in a new genus Pycnolepas.

With respect to the scuta, P. rigidus is distinguished by the narrow, wall-sided, apico-basal ridge and in the production of the basi-lateral portion of the valve. P. fallax is readily distinguished by the apico-basal ridge having a sharp edge with sloping sides, as well as by the absence of longitudinal ridges. P. paronai and P. brïnnichi both have a very broad apico-basal ridge, but while in P. briennichi it is much raised, flat-topped, and with perpendicular sides, in P. paronai it is flatly rounded. The scutum of P. paronai is further distinguished by the wavy longitudinal ridges radiating from the apico-basal ridge, and that of P brünichi in being less clongate than that of the other species.

In the terga P. fallax is at once distinguished by the apicobasal ridge having sloping sides: this ridge in P. rigidus is narrow and has perpendicular sides; in P. paronai it is only slightly broader than in P. rigidus, but the valve can be distingnished by the straightness of the ridge. P. paronai differs from P. brumnichi in the presence of wavy longitudinal ridges radiating from the apioo-basal ridge.

Seguenza (1876, Atti Acead. Pontaniana, vol. x. p. 395) doubtfinlly referred Pollicipes rigidus and P. elegans $(=P$. brimnichi), together with P. gracilis, P. calidus, and P. dorsatus, to his gemus Scilleelepas. Alessandri, however (1906, Palieont. Ital. vol. xi1. pp. 249, 264), judging mainly by the form of the scuta, considered that P. elegans and P. rigidus could not be referred to Scillalepas, but that they agreed much more closely in the form of the scuta with Pollicipes. He therefore referred the species P. rigidus and P. elegans, together with P. fallax and P. paronai, which have a precisely similar form of scutum, to the genus Pollicipes. In Scillcelepus the upper whorl cousists of 5 valves, namely, carina,
paired scuta, and paired terga. The subsequent discovery, therefore, of the upper latera in the species P. jallax, \dot{P}. elegans, P. rigidus, as well as a large rostrum in those species and in P. paronai, shows quite conclusively that they camot be referred to Scillcelepas. These species, for reasons previonsly given, are now referred to the new genus Pycnolepras. Pollicipes dorsatus, which was tentatively referred to Scillcelepas by Seguenza, is now definitely proved to belong to it (see p. 198), and since P. validus is evidently an allied form, there now seems to be more justification for its reference to Scillelepas. P. gracilis is regarded as a synonym of P. validus.

Genus Calantica.

18.5. Calantica, Grar, Aunals of Philosophy (n. s.), rol. x. p. 101.
1907. Calantica, Pilsbry, Bull. U.S. Nat. Mus. no. ©0, p. 8.
1908. C'ulantica, Pilsbry, Proc. Acad. Nat. Sci. Philadelphia, p. 106.
1913. Calantica, Withers, Proc. Zool. Soc. London, p. 942.

Capitulum with two whorls of valves, the upper comprising paired scuta, terga, and a carina, the terga occupying the whole of the space between the scuta and carina; lower whorl comprising three pairs of latera, a rostrum, and a subcarina. Umbo in all valves apical.

The Oriental group, called by Pilsbry (1908), Culantica, s. str., has the lower whorl low and wide, small, not concealing the bases of the valves of the upper whorl.

Subgenus Scillelepas.

1876. Scillalepas, Seguenza, Atti Accad. Pontaniana, vol. x. p. 390.
1877. Scillclepres, Pilsbry, Bull. U.S. Nat. Mus. no. 60. p. 9.
1878. Scillcelepas, Pilsbry, Proc. Acad. Nat. Sci. Philadelphia, p. 106.

Valves of the lower whorl large, high, and incurved, and overlapping the bases of the valves of the lower whorl. Umbo in all valves apical.

Calantica (Scillelepas) dorsata, Steenstrup, sp. (Plate VIII. figs. 12-23.)

1839. Pollicipes dorsa'us, J. Steenstrup, Kr申yer's Naturhist. Tidsskrift, Bd. ii. p. 4ll, pl. r. fig. 27.
1840. Pollicipes validus, J. Steenstrup, tom. cit. p. 412, pl. v. fig. 30.
1841. Pollicipes dorsatus, J. Steenstrup; C. R. Darwin, Pal. Soc. Monorr. Foss. Lepadidre, p. 69, pl. ir. figs. $4 a-f$.
185.4. Pollicipes dorsatus, J. Steenstrup; C. R. Darwin, Ray Soc. Monogr. Subclass Cirripedia, Balanidæ, Synop. et Index Systematicus, p. 638.

> 191:2. Pollicipes dorsulus, J. Steenstrup; K. B. Nielsen, ('irmpedierne i Dammarks Danien-Allejringer, Meddel. Dansk. geol. Foren. Jdd.iv. Heft i. p. 30, pl. i. figrs. 1-1:3, 17 (1 mon figs. $14-16$).
> 1912. Pollicipes elegans, Darwin; K. B. Nielsen, tom.cit. p. 82, pl. ii. firs. 9, 10.

Diagnosis. Valves smooth, strong, and thick. Sentit approaching in shape an equilateral triangle; oceludent margin exteriorly thickened to form a rounded ridge; basilateral angle widely truneated, equalling half the length of the basal margin; tergo-lateral portion, formed by the upturned growth-lines, extremely narrow. 'Terga with a straight wide ridge, with steep sides, extending from the apex to the basal angle, whieh on the sental side is obliquely truncated. Valves of lower whorl large, subtriangular, high, and inenred.

Distribution. Danian : Faxe, Denmark.
Type. Steenstrip (1839) originally founded this speeies on a tergum, but included in his Pollicipes validus a seutum of the species. Darwin (1851) subsequently figured a scutum, tergum, and carina. All the foregoing specimens sould be in the University of Copeuhagen, but at present ouly the carina figured by Darwin (1851, pl. iv. figs. $4 a-c$) can be identified, and this is in the Mineralogical Museum.

Material. Dr. K. Brünnich Nielsen has recently collected a number of valves of this species, comprising 18 carinæ, 48 seuta, 44 terga, and 37 valves of the lower whorl. Of these he figured (1912) a scutum, tergum, and a carina, together with certain valves of the lower whorl. He included with the latter a carinal latus of a Scolpellum (pl. i. figs. $14-16$), mider P. clegans a rostral latus of P. dorsatus (pl. ii. figs. 9, 10), and (pl. ii. figs. 13-18) some peduncular plates which I believe to belong to P. dorsatus, since they agree more with the ornament of the valves of that species. Through the kindness of Dr. J. P. J. Ravi, I have been able to examine the valves of this specics figured by Dr. K. B. Nielsen, together with a scries of valves of the lower whorl, all of which are in the Mineralogical Museum of the University of Copenhagen. A further series of seven valves of the lower whorl has been presented by the Copenhagen University to the Geological Department of the British Muscum, and these are registered I. 15868-I. 15874. For the specimens here figured, I am indebted to Dr. K. B. Nielsen, as well as for a earina, 3 scuta, 2 terga, and a subearina.

Measurements. This is a comparatively large species, and, Anu. \& Ma!, N. Hist. Ser. S. Vol. xiv. 13
to judge from the length of the valves known to me, the capitulum must have attained a length of at least 35 mm . Dr. Brumnich Nielsen (1912, pl. i. fig. 12) gives a figure of a tergum, which measures 30 mm . in length, although the apex of the specimen is slightly broken, and his scutum (pl. i. figs 4-5) has a length of $19 \cdot 7 \mathrm{~mm}$. The carina here figured (Pl. V111. fig. 12) would, if complete, measure quite 30 mm . (it now measures 27 mm .). The valves of the lower whorl and the larger of the peduncular plates here figured (11 . V III. figs. 16-23) measure respectively :-

	Leugth. mm.	Breadth mm.
Restrum.	$4 \cdot 2$	39
Rostral latus (right)	$3 \cdot 7$	$5 \cdot 0$
Median latus	$3 \cdot 8$	$4 \cdot 3$
Subcarina	$2 \cdot 6$	$3 \cdot 4$
Carinal latus	$2 \cdot 3$	2.5
Peduncular plate	$1 \cdot 7$	$1 \cdot 1$

The largest rostral latus is that figured by Dr. Nielsen (1912, pl. i. figs. (6-8) as a carinal latus, which has a length of 5 mm . and a breadth of 8.5 mm .

Scutum (Pl. VIlI. figs. 14, 15) triangular, with the basilateral angle widely trmeated, considerably convex, breadth about three-guarters the length, aper acute, and only slightly enrved towards the terga. Oceludent margin slightly convex, forming rather less than a right angle with the slightly convex basal margin. Tergo-lateral margin usually slightly concave; a narrow slip is formed along it by the upturned growth-lines, and this is abruptly bent inwards, the immer margin of it forming a sharp ridge on the inner surface. The margin of the trumeated basi-lateral angle is almost half the width of the basal margin in the larger valves. Along the occludent margin a narrow portion of the valve is raised to form a rounded ridge, and two further ridges extend from the apex-one to a point about midway on the basal margin, and the other, which is rather less pronounced, to the lowest point of the truncated basi-lateral angle. On the immer surface there is a deep pit for the arductor muscle ; the imer inturued tergal edge is concave, and evidently served for the reception of the tergum; the immer ocehdent edge is of the same width throughont. Above the pit for the adductor musele, there is a triangular depression, bomeded by the imer edges of the tergal and occludent margins.

Teryum (PI. V III. fig. 13) subrhomboidal, elongate, moderately convex transversely ; oceludent and upper earimal margins forming together less than a right angle, and they are about hall the length of the lower carinal and scutal margins. A flat-topped ridge, much steeper on the carinal side, extends in an ahmost straight line from the apex, widens considerably towards the basal margin, and its obliquely trumeated extremity is almost parallel to the upper carinal matrgin.

Carina (Pl. V1II. fig. 12) much elongated, slightly bowed inwards or outwards, flatly arehed transversely, obseurely carinate, with its basal margin almost rectangnlar. The apical half of the valve is much thickened, and its inner portion is flat and in line with the lateral margins; a comparatively wide portion of the lower part of the valve at the inner margins is marked with growth-lines, showing that the valve overlapped the terga to some extent.

Rostrum (Pl. VIII. fig. 18) triangular, not quite so wide as high, strongly convex transversely, with the apical half strongly incurved, and a wide, prominent, rounded, median ridge extending from the apex to the slightly convex basal margin, where it is slightly produced. On the inner surface there is a central depression evidently serving for the reception of the rostral angles of the scuta; and a slight ridge extends from each lateral angle to a point about onethird of the length of the valve from the apex, and above this ridge the valve is marked by growth-lines, which show that the valve overlapped the scuta to some extent.

Rostral latus (Pl. VIII. figs. 17, 19) obliquely triangular, about one and a half times as wide as high, strongly conver transversely, with the apical half strongly incurved, basal margin concave in the middle. On the imner surface a welldefined ridge extends from the apex to about half the length of the valve, and is there met by two further ridges extending from each basi-lateral angle; the valve is thus divided into three almost equal portions, of which the basal one is smooth, and the two upper portions are marked with growthlincs and must have overlapped the rostrum and median latus respectively.

Median latus (Pl. VIII. fig. 20) obliquely triangular, slightly wider than high, almost flat transversely, with the apical portion very slightly incurved, and the lateral margins somewhat raised to form flat-topped ridges. On the imner surface the valve is divided off by ridges, as is the rostrum, except that the median ridge extends only one-third the
length of the valve from the apex; the inner portions of the valve are much less concave than in the rostrum.

Carinal latus (Pl. VIlI. fig. 16) obliquely triangular, almost flat transversely, with a strong median ridge extending from the apex to the basal margin, apical portion slightly incurved, basal margin convex. On the inner surface a ridge extends from each basi-lateral angle to a point slightly over onethind the length of the valve from the apex, and above this ridge the growth-lines meet on a median ridge which is more strongly marked in this valve than in the other basal latera.

Subcarina (Pl. VIII. fig. 21) triangular, almost symmetrical, without a median keel, not so strongly conver transversely as the rostrum, somewhat constricted near the middle, with the apical portion incurved and the basal margin straight. On the imner surface a slight ridge extends from the apex to a point nearly one-half the length of the valve from the apex, and then to each basi-lateral angle. The upper portions marked with growth-lines must have overlapped each carinal latus.

Peduncular plates (Pl. VIII. figs. 22, 23). These are subtriangular, with rounded apex and rounded basal margin; slightly couvex transversely, and slightly incurved. Outer surface smooth, except for a few flatly rounded, transverse ridges. On the inner surface the lower part of the valve is smooth to a varying extent, the upper portion being marked with growth-lines, showing that this part of the plate overlapped the contiguous plates.

Calantica (Scillalepas) valida, Steenstrup, sp. (Plate VIII. fig. 11.)

1799. Bec de Sèche (Loligo calmar), Faujas de Saint-Fond, B., Histoire naturelle de la montagne de St. Pierre, p. 112, pl. xix. fig. 1.
1800. Bek van Loligo calmar (naar van eene onbeliende soort), Traduction Hollandaise de Faujas par Pasteur, Natuurlijke Histoire van den St. l'ietersberg, p. 150, pl. xix. fig. 1.
1801. Pollicipes validus, J. Steenstrup, Kr申yer's Naturhist. Tidsskrift, Bd. ii. p. 412, pl. v . figs. 28, 29, 29*, 31,32 (non fig. 30).
1802. Pollicipes gracilis, F. A. Roemer; Norddeutschen Kreidegeb. p. 104, pl. xri. fig. 14.
1803. Pollicipes gracilis, Roemer; H. B. Geinitz, Das Quadersandsteingeb. p. 100.
1804. Pollicipes validus, Steenstrup; C. R. Darwin, Pal. Soc. Monogr. Foss. Lepadidæ, p. 68, pl. iv. tig. 2.
18:). Pollicipes gracilis, F. A. Roemer; C. 1. Darwin, tom. cit. p. 69, pl. iv. firy. 3.
1805. Pollicipes validus, Steenstrup; C. R. Darwin, Ray Soc. Monogr. Subclass Cirripedia, Balanide, Synop. et Index Systematicus, p. 637.
185.4. Mitella valida, Steenstrup, sp.; J. Bosquet, Monogr. Crust. Foss. du Duché de Limbourg, p. 24, pl. ii. figs. 1-3.

Diaynosis. Valves strong, the scuta and carina being cxtremely thick. Scutum elongate and strongly bent towards the terga, with a ridge extending from the apex to a point on the basal margin rather nearer to the rostral angle ; oceludent margin much thickened, and at the rostral angle the valve is produced into a short blunt tooth. Carina steeply arched transversely, the greater part projecting freely, and on the inner side either that or with a prominent central crest.

Distribution. Danian : Scania, Sweden. Maestrichtian : Petersburg, near Maestricht. Upper Senonian: Ciply, Belgium.

Type. This species was founded by Steenstrup (1839) on some carinæ and seuta from Scania, Sweden, but among them he figured (pl. v. fig. 30) a scutum of Pollicipes dorsatus. Some of Stcenstrup's specimens are preserved in the University of Copenhagen, the carina (pl. v. fig. 29) being in the Zoological Museum, and the two scuta (pl. v. figs. 31-32) in the Mineralogical Museum. I select the original of fig. 32 as the holotype. Darwin (1851) subsequently figured a carina and two scuta, and of these the carina (pl. iv. figs. $2 a-d$) is in the Zoological Museum, and the scutum (p l. iv. figs. $2 e-f$) is in the Mineralogical Museum, of the University of Copenhagen. Bosquet (185 \downarrow) also figured a scutum and carina, with the addition of a tergum, but I do not know where these specimens are.

Among the Cirripede valves from Ciply (Belgium) in the Geological Department of the British Museum is a rostrum, registered 38460 , which must, I think, belong to this species. It differs much from that of P. dorsatus, especially in having the basal margin acutely rounded, and, since the upper margins make a more obtuse angle than in that species, the whole valve approaches more closely to a diamond shape. The ridge extending from below the apex to the lateral angles on the inner surface differs from that of P. dorsatus in being much less angular. It is quite possible that this rostrum may belong to some other species, but in the absence of any definite evidence I refer it to P. validus.

Measurements. This rostrum is 7.9 mm . long, and its breadth is 7.7 mm .

Description.-Rostrum (Pl. VIII. fig. 11) subtriangular, basal margin acutely rounded, breadth almost equalling the length, strongly convex transversely, with the apical portion moderately incurved, and a wide, but not very prominent, rounded, median ridge extending from the apex to the basal margin. On the inner surface a gently rounded, delicate ridge extends from the lateral angles to a point nearly onethird the length of the valve from the apex; the portion of the valve above this ridge must have projected freely, but it is not perceptibly thickened, and the growth-lines are not apparent.

Structure and Affinities of Scillælepas dorsata and S . valida.

So long as the species Pollicipes dorsutus and P. validus of Steenstrup were known only by the disconnected valves

Fig. 1.

Calantica (Scillcelepas) dorsata, Steenstrup, sp. Danian : Faxe, Denmark. Restoration of capitulum.
c., carina ; c.l., carinal latus; m.l., median latus ; r., rostrum ;
r.l., rostral latus ; s., scutum ; s.c., subcarina; t., tergum.
of the upper whorl, it was an open question whether they should or should not be referred to the group of species included under Scillalepas, although these valves approached more closely to the species of Scillalepas than to those of Pollicipes. Dr. K. Brünnich Nielsen's discovery, however, of a number of valres of the lower whorl of P. dorsatus in the Danian of Faxe, Denmark, including those here figured (Pl. VIII. figs. 16-21), enables us not only to prove that the species is a true Scilleelepas, but also to give a restoration of the capitulum (see text-fig. 1). The capitulum is formed of a carina, paired scuta, and paired terga, with three pairs of
basal latera, a rostrum, and a subcarina. In his paper (1912) Dr. K. B. Nieben figured only two of the basal latera (namely, a rostrm and two rostral latera), but since he still referred the species to Pollicipes, he did not realize the significance of these valves. All the valves of the lower whorl of P. dorsatus are here figured, and their structure agrees in all respects with the species of Scillaelepus, especially S. carinata, Spgnenza, from the Pliocene of Sicily, and the recent S. superba, Pilsbry. W'e are therefore able to prove that a true Scillaelepas existed in the Upper Cretaceons (Danian), and the importance of this is apparent, since the remaining fossil forms are S. patome, Alesandri, from the Miocene of Italy, and S. carinata and S. ornata, Seguenza, from the Pliocene of Sicily.

Since we can prove that P. dorsatus belongs to Scillalepas, there is little donbt that P. ralidus belongs to Scillcelepus also, although only the upper series of valies and a single rostrum of the lower whorl are known.

Phylogenetic Considerations.

In considering the phylogenctic position of the pedunculate Cirripedes Pycnolepas, Zeuymatolepas, C'alantica (Scillelepas and Titanolepus), and the sessile Cirripede Brachylepas, all represented in the Cretaceous rocks, it is apparent that we are dealing wish forms that have been erolved from either Pollicipes or a Pollicipes-like ancestor, and represent several lines of evolution. All these forms still retain valves of a Pollicipes-like character, and, since they are well differentiated in the number, relative position, and structure of the capitular valves, specialization must have begun long before the close of the Jurassic periork. A point of special interest is the fact that even so early in the Cretaccous as the Cenomanian, two forms, Zeugmatulepas and Titunolepas, had independently developed in the scutum a subcentral umbo, a type of valve hitherto known only in the more specialized species of Scalpellum, of which the earliest species occur in the Upper Senonian. A similar development in the scutum is exhibited by the genns Loricula, which ranges from Turonian to the Upper Senonian.

The new genus Pycnolepas includes a series of speiies, ranging from Albian to Helvetian, in which the capitulum appears to have been formed of eight valves, and the peduncle of comparatively large plates. These capitular valves
agree with those of Brachylepas in number and disposition, and, except for the narrower carina and rostrum, in their structure also. The narrowness of the carina and rostrum, however, is of significance, for in this character they agree more with the pedunculate Cirripedes. Brachylepas is considered to be a sessile Cirripede, mainly because of the modification of the basal whorls of imbricating plates to form a shelf or platform romud the base of the capitulum; and the much wider semiconical carina and rostrum allow of a closer approach of the capitulum to radial symmetry, which is in accord with this interpretation.

The great resemblance between the capitular valves of Brachylepas and those of the series of species included in Pycnolepas suggests the probability that Brachylepas was an offshoot from that line, which by suppression of the peduncle and modification of the lower valves of the capitulum, accompanied by widening of the carina and rostrum, had evolved into a sessile Cirripede.

It is probable that the ancestral species of Pycnolepas existed in the Upper Jurassic (Tithonian), for the two recently-described species, Brachylepas (?) fimbriatus and B. (?) tithonicus (1912, Geol. Mag. pp. 505-508, pl. xxiii.), each represented by a single carina from Stramberg, Moravia, agree in every way with the structure of the carina in the species of Pycnolepas. The relationship of those Stramberg species to P. rigidus and P. fallax was pointed out at the time, but, since the present evidence with regard to P. rigidus and P. fallax was not then known, the two Stramberg carinæ were included provisionally in Brachylepas, to which P. fallax had been referred by Dr. H. Woodward.

When we compare Brachylepas * (text-fig. 5) and Pycnolepas (text-fig. 4) with the recent pedunculate Cirripede Pollicipes mitella (text-fig. 2), we see that P. mitella has precisely the same arrangement of the upper valves of the capitulum. Brachylepas, however, is widely differentiated structurally by the presence of several whorls of imbricating plates at the base of the capitulum, and in this character has a close ontward resemblance to the recent sessile Cirripede Catophragmus polymerus (text-fig. 3) of the subfamily Chthamalinir. There is fairly strong evidence, both positive and negative, to support the supposition that Pycnolepas has a peduncle with large plates and no lower whorl of valves,

[^3]but when we turn to Pollicipes mitella we see that it has a single lower whorl of valves incheding a subrostrum and subcarina, and with a short perlunele, which is sometimes even cousiderably shorter than the capituhm.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 2.-Pollicipes mitella, Linnæus. Living: Philippines, China, \&ec. (After Darwin.)
Fig. 3.-Catophragmus polymerus, Darwin. Living: Australian Coast. (After Darwin.)
Fig. 4.-Pycnolepas rigidus, J. de C. Sowerby, sp. Albian and Cenomanian, Europe. Restoration.
Fig. 5.-Brachylepas naissanti, Hébert, sp. Upper Senouian, Europe. Restoration.
c., carina; c.l., carinal latus; i.s., imbricating plates; l., upper latus; r., rostrum ; r.l., rostral latus; s., scutum ; s.c., subcarina ; s.r., subrostrum ; t., tergum.
The blocks for figs. 2, 3 , and 5 were kindly lent by the editor of the 'Geological Magazine.'

While it may be supposed that the pedunculate Pycnolepas was the ancestral stock which gave rise to the sessile

Brachylepas, it is certainly interesting that Brachylepas should show in its structure some relationship to the se-sile Catophragmus of the subfamily Chthamaline. It is much more so when we consider that Pollicipes mitella, which is more closely related in the structure and disposition of the upper valves of the capitulum to Pycnolepas than to any other Cirripede, has also certain definite characters in common with the Chthamalire. Darwin* drew attention to the fact that P. mitella is more nearly related to the sessile Cirripedes, especially the Chthamalinæ, than to any others, except perhaps Lithotrya, and in his Monograph \dagger states the "The Chthamaline, in the structure of the mouth and cirri, and to a certain extent in that of the shell, fill p the interval betreen the Balaninæ and Lepadidæ; and Catophraymus forms in a very remarkable manner the transitional link, for it is impossible not to be struck with the resemblance of its shell with the capitnlum of Pollicipes."

It would seem, therefore, that the relationship to the Chthamalinæ (Catophragmus) of the fossils Pycnolepas and Brachylepas, and of the recent Pollicipes mitella, as deduced by a study of their valves, is supported by the structure of the animal's body in P. mitella. One might also reasonatly infer that Pollicipes mitella is the survivor of the group of species included in Pycnolepas, and that it is independentiy tending to evolve into a sessile Cirripede through the suppression of its peduncle and a moditication in the lower valves of the capitulum, just as did the early offshoot Brachylepas.

It is indeed probable that the sessile condition has been arrived at independently on several different lines of descent during the evolution of the Cirripedia. In a paper, now in the press, I have shown that the Verrucide have a phylogenetic history widely different from that of the Balanidæ (seasu lato), and evidence is not wanting to show that the Balanidæ also are at least diphyletic. The Chthamaline have almost certainly arisen from some such form as Brachylepas, while it is extremely difficult, if not impossible, to derive the Balaninæ from that source or indeed from any form as ret known.

Zeugmatolepas has already been described in a former paper (Proc. Zool. Soc. London, 1913, pp. 937, 941), and it

[^4]will suffice here to say that in the number of valves of the capitulum it agrees with P'ollicipes, but differs in the more erect and Scalpellum-like shape of the capitulum, in the size and position of the upper latera, and in the specialized form of the scuta, characters seen in the more specialized forms of Scalpellum. In fact, it is a Pollicipes, which, while retaining the large number of capitular valves, is developing some of the characters of a Scalpellum. It probably represents an early attempt at that speciatization in the form and position of the upper valves which was snbsequently aequired independently by the more specialized forms of Scalpellum.

There now remain to be considered the species grouped in the genus Calantica. This genus was evidently derived from a Pollicipes-like form, and the valves still retam their Pollicipes-like character, in consequence of which the ['ossil forms have been referred mainly to Pollicipes. Calantica differs from Pollicipes in the greater specialization of the capitular valves, and the eapitulum is composed of only scuta, terga, and a carina, with but a single basal whorl of valves, the valve which is homologous with the upper latus in other forms being still a member of the lower whorl. There are two groups of recent species, namely, an Oriental group (Calantica, s. str.) and a North Atlantic-Mediterranean group (Scillelepas). These two groups may conceivably represent two collateral stocks, bit at present I am inclined to think that the species included in Calantica, s. str., are derived from the more primitive Scillalepas, mainly throngh the weak calcification of the basal whorl of valves. Scillatepas is known from the Pliocene and Miocene of Sicily and Italy respectively, and in the present paper has been shown to have existed in the Upper Senonian and Danian, but no fossil has yet been proved to belong to the more typical species of Calantica, s. str. The probability is that the ancestral forms of Scillelepas occurred in the Jurassic, but although at present there is not sufficient evidence to prove this, it is certain that some of the disconnected valves found in Jurassic rocks have much resemblance to those of Scillelepus. It is fairly evident that in Scillelepas we have a group of species intermediate between Pollicipes and Scalpellum, and therefore it is another example of the many forms that have been derived from a Pollicipeslike ancestor throught the specialization in the number and position of the capitular valves.

The recently-described Titanulepas *, although ranked as * 1913, T. H. Withers, I'ruc. Zool. Soc. Loudon, p. 943.
a sulgenus of Calantica, differs in the form of the scutum from the other members of the genus. It existed in the Cretaceous (Cenomanian and Turonian), and is considered to be an early specialized form, which branched off from the main Scillcelepas line and may eventually have given rise to the geuus Oxynaspis.

Although we can gain some idea of the phylogenetic position of the Cirripedes discussed in this paper, even with the small number of forms and the meagre evidence at our disposal, it is obvious that a knowledge of their Jurassic ancestors would help materially. Unfortunately, the Jurassic species are known in the main only by a few disconnected valves, which give very little idea of the form of the capitulum; and until our knowledge of these forms is considerably extended, our conception of the evolution of the group, as a whole, can make little progress.

In conclusion, I wish to express my indebteduess to the following gentlemen, who have kindly helped me either by the loan or gift of specimens, or in other ways :-Prof. G. de Alessandri, Dr. F. A. Bather, Dr. H. P. Blackmore, Mr. R. M. Brydone, Dr. W. T. Calman, Mr. C. P. Chatwin, Mr. F. Leney, Dr. K. Brünnich Nielsen, Prof. C. F. Parona, Dr. J. P. J. Ravn, and Count Luigi di Rovasenda.

EXPLANATION OF THE PLATES.

Plate VII.

Pycnolepas paronai, de Alessandri, sp.
Miocene (Helvetian) : La Grangia, Colli di Torino, Italy.
Fig. 1. Rostrum.
Fig. 2. Scutum. Imperfect left valre.
Fig. 3. Tergum. With base broken off.
Fig. 4. Carina. $\times 2$ diam. Coll. R. Mnseo Torino. Origl. figd. G. de Alessandri, Palæontogr. Ital. 1906, vol. xii. p. 248, pl. xiii. fig. 8.

All figures, except fig. 4, nat. size.
Pycnolepas briinnichi, Withers.
Danian, Bryozoa Limestone : Faxe, Denmark.
Fig. 5. Rostrum.
Fig. 6. Scutum. Right valve, with rather narrow apico-basal ridge.
Fig. 7. Upper latus. Apex broken off.
Fig. 8. Tergum. light valve.
Fig. 9. Carina.
All figures $\times 4$ diam.

Pycnolepas fallar, 1)arwin, sp.

Upper Senonian, B. macronuta-zone: Norwich, Norfolk (figs. 10, 11, 13, 14).
Upper Senonian, B. mucronata-zone (upper part): Trimingham, Norfolk (fig. 12).
Fig. 10. Rostrum. Norwich Castle Museum (Fitch Colln.), 2156 c.
Friy. 11. Scutum. Brit. Mus. (Nat. Mist.), I. 14466.
Fig. 1थ. Upper latus. 1. M. Brydone Colln. Figd. HI. Woodward, Geol. Mag. 1906, p. 344, tig. 21.
Fig. 13. Tergum. Norwich Castle Museum (Fitch Colln.), 153c. The original tergum (paratype) of Darwin, 185l, Pal. Soc. Monogr. Foss. Lepadidæ, p. 76, pl. iv. fig. $8 b$.
Fïg. 14. Carima. Brit. Mus. (Nat. Hist.), I. 14467.
All figures $\times 2$ diam.
Pycnolepas rigidus, J. de C. Sowerby, sp.
Albian, Gault: Folkestone, Kent.
Fig. 15. Liostrum.
Fig. 16. Scutum.
Fig. 17. Upper latus.
Fig. 18. Tergum.
F̈̈g. 19. Carina.
Figs. 15, 16, 18, 19, $\times 2$ diam. ; fig. 17, $\times 4$ diam.

Plate VIII.

Pycnolepas rigidus, J. de C. Sowerby, sp.
Albian, Gault: Folkestone, Kent.
Fig. 1. Peduncular plate. Outer view.
Fig. 2. " " Inner view of an incomplete example, showing the median basal socket.
Fig. 3. " " Inner basal view of another example.
All figures $\times 8$ diam.
Cenomanian, Chalk Mart: near Cambridge.
Fig. 4. Scutum. Left valve showing very prominent apico-basal ridge, which projects beyond the basi-lateral angle. $\times 4$ diam.

Pycnolepas fullax, Darwin, sp.
Upper Senonian, M. cor-anguinum-zone: Quidhampton, nr. Salisbury, Wilts.
Fig. 5. ? Rostrum. a, side riew ; b, outer view. $\times 2$ diam. Dr. H. P. Blackmore's Colln.

Pycnolepas brïnnichi, Withers.
Danian, Bryozoa Limestone: Faxe, Denmark.
Fig. 6. Scutum. Left valse, with very broad apico-basal ridge. $\times 4$ diam.

Pyenolepas scalaris, Withers. Cenomauian, Chalk Marl: near Caubridge.
Fig. 7. Rostrum. a, outer riew; b, inner riew.
Fiy. \&. Rostrum. A sualler example in which the longitudinal ridges are not so pronounced.
Fig. 9. Upper latns. a, outer view; b, inner view.
Fig. 10. Scutum. a, onter view ; b, inner view.
Figures $\times 8$ diam.
Calantica (Scillalepas) valida, Steenstrup, sp.
Upper Senonian : Ciply, Belgium.
Fig. 11. Rostrum. Outer riew. $\times 2$ diam, Brit. Mus. (Nat. Hist.), 38460.

Calantica (Scillcelepas) dorsata, Steenstrup, sp.
Danian, Bryozoa Limestone: Faxe, Denmark.
Fig. 12. Carina. (With apex broken.)
Fig. 13. Tergum. Right ralve. $\}$ Outer views. $\times 1_{\frac{1}{2}}$ diam.
Fig. 14. Scutum. Large right valve.
Fi\%. 15. Scntum. Young left valve.
Fig. 16. Carinal latus.
Fig. 17. Rostral latus. Left valve.
Fi\%. 18. Rostrum. a, outer view ; b, inner riew.
Fig. 19. Rostral latus. Right valve.
Fig. 20. Median latus.
Fig. 21. Subcarina.
Figs. 2-2, 23. Peduncular plates. a, outer view ; b, inner rien. $\times 8$ diam.
> XXVI.-Description of a new Species of Terrestrial Isopoda from India. By Walter E. Collinge, M.Sc., F.L.S., F.E.S.

[Plate IX.]
I AM indebted to thie kindness of Dr. A. D. Imms, of the University of Manchester, for a tube of terrestrial Isopoda containing three specimens, two adult and one young, referable to the genus Porcellio, Latreille, collected by him at Allahabad.

During the past few years I have examined a considerable number of terrestrial Isopoda from this region, including many species of Porcellio; I camot, however, find that the present species agrees with any of these or with any that have been previously described.

[^0]: * Withers, T. II., Proc. Zool. Soc. London, 1913, pp. 988, 943.

[^1]: 1836. Pollicipes rigidus, J. de C. Sowerby, Trans. Geol. Soc. 2nd ser. vol. iv. p. 835 , pl. xi. tig. 6*.
[^2]: * See T. II. Withers, 1912, Norfolh and Norwich Nat. Soc. vol. ix. 1. 309.

[^3]: * I have already discussed the relationship of this form with the recent Cirripedes Catoplragmus polymerus and Pollicipes mitella in a former paper (see Geol. May. 1912, pp. 356-358).

[^4]: * See Darwin, C. R., 1851, Pal. Soc. Monngr. F'oss. Lepadidæ, p. 48 ; 1851, Ray Soc. Monogr. Curripedia, Lepadidre, p. 324.
 \dagger Darwin, C. K., 185t, Ray Soc. Monogr: Cimipedia, Balanidæ, p. 486.

